Find Null values and then fill Null
with Mean Values
import pandas as pd
from sklearn.datasets
import load_iris
# Load the Iris dataset
iris = load_iris()
# Convert the dataset to
a DataFrame
df =
pd.DataFrame(data=iris.data, columns=iris.feature_names)
# Apply isnull function
print("Null values
before filling:")
print(df.isnull().sum())
# Fill null values with
mean
df.fillna(df.mean(),
inplace=True)
# Check if null values
are filled with mean
print("\nNull values
after filling with mean:")
df.isnull().sum()
Explanation:
Importing Libraries:
import pandas as pd:
Imports the pandas library and assigns it the alias pd. Pandas is a powerful
library for data manipulation and analysis in Python.
from sklearn.datasets
import load_iris: Imports the load_iris function from the sklearn.datasets
module. This function is used to load the Iris dataset, a popular dataset in
machine learning.
load_iris(): Loads the
Iris dataset into the variable iris. This dataset contains information about
iris flowers, including sepal and petal dimensions, and species labels.
Converting to DataFrame:
pd.DataFrame(): Converts
the data loaded from the Iris dataset into a pandas DataFrame.
data=iris.data: Passes
the data (features) of the Iris dataset to create the DataFrame.
columns=iris.feature_names:
Assigns column names to the DataFrame using the feature names from the Iris
dataset.
Checking for Null Values:
df.isnull().sum(): Uses
the isnull() function to identify missing values in the DataFrame. The .sum()
function then counts the number of missing values in each column.
print("Null values
before filling:"): Prints a message to indicate that the following output
shows null values before filling.
Filling Null Values with Mean:
df.mean(): Calculates the
mean of each column in the DataFrame.
df.fillna(): Fills
missing values (NaN) in the DataFrame with the corresponding column means.
inplace=True: Modifies
the DataFrame in place, meaning the changes are applied directly to the
DataFrame df.
Checking Null Values After Filling:
print("\nNull values
after filling with mean:"): Prints a message to indicate that the
following output shows null values after filling with the mean.
df.isnull().sum(): Checks
again for missing values in the DataFrame after filling them with the mean and
prints the count of null values in each column.
0 टिप्पण्या
कृपया तुमच्या प्रियजनांना लेख शेअर करा आणि तुमचा अभिप्राय जरूर नोंदवा. 🙏 🙏